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ABSTRACT
Many applications in multiagent learning are essentially convex
optimization problems in which agents have only limited
communication and partial information about the function being
minimized (examples of such applications include, among others,
coordinated source localization, distributed adaptive filtering,
control, and coordination). Given this observation, we propose a
new non-hierarchical decentralized algorithm for the asymptotic
minimization of possibly time-varying convex functions. In our
method each agent has knowledge of a time-varying local cost
function, and the objective is to minimize asymptotically a global
cost function defined by the sum of the local functions. At
each iteration of our algorithm, agents improve their estimates
of a minimizer of the global function by applying a particular
version of the adaptive projected subgradient method to their local
functions. Then the agents exchange and mix their improved
estimates using a probabilistic model based on recent results in
weighted average consensus algorithms. The resulting algorithm
is provably optimal and reproduces as particular cases many
existing algorithms (such as consensus algorithms and recent
methods based on the adaptive projected subgradient method). To
illustrate one possible application, we show how our algorithm can
be applied to coordinated acoustic source localization in sensor
networks.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization—Convex
programming

General Terms
Algorithms, Theory

Keywords
Decentralized convex optimization, distributed computing,
consensus, acoustic source localization

1. INTRODUCTION
Much of the work in multiagent learning has traditionally
considered game-theoretic approaches [1], but recently it has also
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been acknowledged that many important problems would greatly
benefit from alternatives [2]. In light of this observation, we
address multiagent learning from an engineering point of view
where the objective is to minimize a global collective function
through local decision making [3]. Examples of applications in
multiagent systems that fall within this framework are present in
many seemingly distinct areas including, but not limited to, game
theory [4], control [5], and signal processing [6–9]. In particular,
here we consider problems where agents forming a network must
optimize a global convex cost function defined by the sum of local
convex functions, each of which is known by only one agent (a
problem that occurs in many coordination, control and consensus
settings [5–9], and in particular we consider here the problem of
coordinated source localization by multiple simple range sensors
[7, 8, 10]). In this setting, the main challenges faced by algorithms
for convex optimization are that the agents have only partial
knowledge of the global function and limited communication
capabilities (i.e., not all agents can directly communicate with each
other).

Given this background, there has been a great deal of effort
devoted to the development of non-hierarchical iterative algorithms
to handle the above convex optimization problems [5–9]. Generally
speaking, these iterative schemes differ in the way that agents
exchange information and improve the estimate of a minimizer of
the global function.

Incremental methods where agents are activated sequentially,
one at a time, have a long history in the literature [8, 9]. However,
one of the major issues of incremental approaches is that many
iterations are required to produce an accurate estimate of a
minimizer of the global function in every agent (because only one
agent is active at each iteration). In addition, acquiring a path
visiting all agents in the network is often necessary, and this is
challenging in large networks with sparse communication (as in
the case with the sensor network we consider here).

More recently there has also been an increasing interest in
algorithms where agents work asynchronously and in parallel
[5–7]. They are usually faster than incremental methods and do
not require complex routing schemes, but they are often analyzed
by making extensive use of the assumption of simultaneous
information exchange among agents, which may not be possible
in every system (e.g., when agents communicate asynchronously).
Furthermore, they often do not consider agents with time-varying
cost functions, an important class of problems common in systems
where data to build those functions arrive sequentially and a good
estimate of a minimizer has to be obtained online and in real time
[4, 6, 7, 11].

To address these shortcomings, we propose an algorithm that
minimizes asymptotically time-varying cost functions without
necessarily assuming simultaneous information exchange among
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agents. In this algorithm, each agent first improves the estimate
of the minimizer of the global function by applying the adaptive
projected subgradient method [11] (which itself is an extension
of Polyak’s algorithm to handle time-varying cost functions) to
its local function. Then the agents locally and asynchronously
exchange the improved estimates using a communication model
inspired by recent results in gossip consensus algorithms [12]. This
model enables us to exploit the fact that in wireless systems data
can be broadcast simultaneously to many agents without increasing
the complexity of the system. In addition, it does not necessarily
require simultaneous information exchange. To exemplify one
application of the general method developed here, we derive a new
algorithm for coordinated acoustic source localization. We choose
this application because it has an intuitive geometrical meaning,
illustrates how the limitations of recent incremental algorithms
can be overcome without incorporating unnecessary heuristics (by
essentially changing the communication model among agents), and
shows simple techniques that can be used when many assumptions
for the convergence of the proposed method in its most general
form do not necessarily hold. In more detail, the main contributions
of this study are as follows:

• We extend the communication model of the algorithms in
[6, 7] to enable low-complexity subgradient methods to be
applied to more general convex optimization problems in
multiagent systems. Simultaneous information exchange
among agents is not necessarily assumed and the cost
functions can be time varying. We name our approach
broadcast adaptive subgradient method and show that
existing algorithms such as those in [6, 7, 12] (and many
others) are particular cases of our method.

• We show conditions to guarantee that, with probability one,
the agents minimize asymptotically the (time-varying) global
function and agree on a minimizer.

• We evaluate our approach by using it to derive a new
asynchronous algorithm for coordinated acoustic source
localization. This algorithm is called asynchronous
broadcast projection onto convex sets (POCS) algorithm
and outperforms existing algorithms (e.g., the incremental
POCS algorithm [8]) in terms of both convergence speed and
estimation accuracy in practical scenarios without requiring
complex routing schemes.

The structure of the paper is as follows. Sect. 2 outlines basic
tools in convex analysis and reviews a class of problems with many
applications in multiagent systems. Sect. 3 introduces and analyzes
the proposed algorithm, which solves the problem in Sect. 2. In
Sect. 4 we specialize the algorithm in Sect. 3 to estimate the
position of acoustic sources with sensor networks.

2. PRELIMINARIES
In this section we give some definitions that will be extensively
used in the discussion that follows. In particular, we denote
the component of the ith row and jth column of a matrix X

by [X ]ij . For every vector v ∈ R
N , we define the norm

of v by ‖v‖ :=
√

vT v, which is the norm induced by the
Euclidean inner product 〈v, y〉 := vT y for every v, y ∈ R

N .
For a matrix X ∈ R

M×N , its spectral norm is ‖X‖2 :=

max{√λ| λ is an eigenvalue of XT X}, which satisfies ‖Xy‖ ≤
‖X‖2‖y‖ for any vector y of compatible size.

A set C is said to be convex if v = νv1 + (1 − ν)v2 ∈ C
for every v1, v2 ∈ C and 0 ≤ ν ≤ 1. If C ⊂ R

N is a closed
convex set, the metric projection PC : R

N → C is a mapping from

v ∈ R
N to the uniquely existing vector PC(v) ∈ C satisfying

‖v − PC(v)‖ = miny∈C ‖v − y‖ =: d(v, C).
A function Θ : R

N → R is said to be convex if ∀x, y ∈ R
N and

∀ν ∈ [0, 1], Θ(νx + (1 − ν)y) ≤ νΘ(x) + (1− ν)Θ(y) (in this
case Θ is continuous at every point in R

N ). The subdifferential of a
convex function Θ : R

N → R at y is the nonempty closed convex
set of all the subgradients of Θ at y:

∂Θ(y) := {a ∈ R
N |Θ(y) + 〈x − y, a〉 ≤ Θ(x),∀x ∈ R

N}.
(1)

In the sequel, (Ω,S ,P) always denotes probability spaces,
where Ω is the sure event, S is the σ-field of events, and P is the
probability measure. For brevity, we will often omit the underlying
probability spaces. Unless otherwise stated, we always use the
Greek letter ω ∈ Ω to denote a particular outcome. Thus, by
xω (Xω), we denote an outcome of the random vector x (matrix
X). We will also often drop the qualifier “almost surely” (or “with
probability 1”) in equations involving random variables.

We now turn to the problem formulation. We represent a system
with N agents by a network with a possibly time-varying directed
graph denoted by G[i] := (N , E [i]), where N = {1, . . . , N} is
the set of agents and E [i] ⊆ N ×N is the edge set [13]. The edges
of the graph indicate possible communication between two agents.
More precisely, if agent k can send information to agent l at time
i, then (k, l) ∈ E [i] (we assume that (k, k) ∈ E [i]). The inward
neighbors of agent k are denoted by Nk[i] = {l ∈ N| (l, k) ∈
E [i]} (i.e., l ∈ Nk[i] are agents that can send information to agent
k at time i). We assume that each agent k has knowledge of a
local convex cost function Θk[i] : R

M → [0,∞) (i ∈ N). Note
that the local cost functions Θk[i] are possibly time-varying and
not necessarily differentiable. We define the global cost function
Θ[i] : R

M → [0,∞) of the network by:

Θ[i](h) =
X

k∈N

Θk[i](h), (2)

which is the function that all agents have to minimize. At time i,
each agent k also has its own estimate hk[i] ∈ R

M of a minimizer
of Θ[i] and do not know Θj [i] if j �= k. We also require that the
agents agree on a minimizer of (2), so an ideal decentralized non-
hierarchical algorithm should solve:

minimize
X

k∈N

Θk[i](hk[i])

subject to hk[i] = hl[i], ∀k, l ∈ N . (3)

Unfortunately, solving (3) at every time instant i is difficult
if the communication among agents is limited because in such
a case agents have only partial information of the problem. To
solve (asymptotically) the optimization problem in (3) with low
computational complexity, we add the following assumption.

ASSUMPTION 1.

At every time index i, the sets of optimizers of the local cost
functions have nonempty intersection, i.e.,

O[i] :=
\

k∈N

Ok[i] �= ∅, (4)

where

Ok[i] :=

j

h ∈ R
M | Θk[i](h) = Θ�

k[i] := inf
h∈RM

Θk[i](h)

ff

(k ∈ N ). (5)
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Assumption 1 is valid in many practical problems [6].
Furthermore, while in some applications Assumption 1 does not
necessarily hold because, for example, of the presence of noise in a
sensor measurement, we can still use the proposed method because
there are simple techniques that can mitigate the effects of noise
(c.f. Sect.4).

In light of Assumption 1, any h�[i] ∈ O[i] is a minimizer of (2),
and thus the optimization problem in (3) is solved if every agent
agrees on a vector minimizing every local cost function. Based on
this fact, we devise an algorithm that, with probability 1, minimizes
asymptotically all local cost functions and guarantees that the
agents reach asymptotic consensus. Asymptotic minimization of
possibly time-varying cost functions is a common requirement in
set-theoretic adaptive filtering [11] and is defined below.

DEFINITION 1. Let Θ[i] : R
M → [0,∞) be a convex cost

function and denote by h[i] ∈ R
M an estimate of a minimizer of

Θ[i]. Assume that, for every i ∈ N, there is a time-invariant scalar
Θ� ∈ [0,∞) such that Θ� = infh∈RM Θ[i](h). We say that an
algorithm minimizes asymptotically Θ[i] if the algorithm produces
a sequence h[i] satisfying

lim
i→∞

Θ[i](h[i]) = Θ�.

In turn, asymptotic consensus is mathematically expressed as [6]

lim
i→∞

[(I − J)ψ[i]] = 0, (6)

where ψ[i] := [h1[i]
T . . . hN [i]T ]T , J := BBT ∈ R

MN×MN ,
B := [b1 . . . bM ] ∈ R

MN×M , bk = (1N ⊗ ek)/
√

N ∈ R
MN ,

1N ∈ R
N is the vector of ones, ek ∈ R

M (k = 1, . . . , N ) is
the standard basis vector, and ⊗ denotes the Kronecker product.
Note that J is the orthogonal projection matrix onto the consensus
subspace

C := span{b1, . . . , bM}. (7)

(If ψ[i] ∈ C, then ψ[i] = Jψ[i] and all local estimates hk[i]
(k ∈ N ) are equal, i.e., we have consensus: hk[i] = hj [i] for
every k, j ∈ N ).

3. THE LEARNING ALGORITHM
To solve (3) asymptotically, as in [6, 7], each agent k first updates
hk[i] by applying the adaptive projected subgradient method [11]
to its local function Θk[i]:

h
′
k[i + 1] = hk[i] − μk[i]

(Θk[i](hk[i]) − Θ�
k[i])

(‖Θ′
k[i](hk[i])‖2 + δk[i])

Θ′
k[i](hk[i]),

(8)

where h′
k[i + 1] is the resulting estimate after the subgradient

update; Θ′
k[i](hk[i]) ∈ ∂Θk[i](hk[i]) (see (1)) is a subgradient

of Θk[i] at hk[i]; μk[i] ∈ [0, 2] is a step size; Θ�
k[i] :=

infh∈RM Θk[i](h) (k ∈ N ); δk[i] > 0 is an arbitrarily small
bounded number if Θ′

k[i](hk[i]) = 0 or δk[i] = 0 otherwise;
and h[0] is an initial (deterministic) estimate of the parameter of
interest.

In the second step of the algorithm, agents exchange information
locally. Given a graph G[i], we consider agents exchanging
information according to:

hk[i + 1] =
X

j∈Nk[i]

W kj [i]h
′
j [i + 1], k = 1, . . . , N, (9)

where W kj [i] : Ω → R
M×M is a random weight matrix that

agent k assigns to the edge (j, k) at time i (W kj [i] = 0 if (j, k) /∈

E [i]). The information exchange in (9) is decentralized because, as
in algorithms for average consensus [12–14], each agent k needs
only the estimates hj [i] of its neighbors j ∈ Nk[i] to compute
(9). Note that we can rewrite (9) in the equivalent form [h1[i +
1]T . . . hN [i + 1]T ]T = P [i][h′

1[i + 1]T . . . h′
N [i + 1]T ]T ,

where P [i] : Ω → R
MN×MN is a matrix having W kj [i] in (9) as

submatrices. For the algorithm to work properly, we require that,
periodically (c.f. Theorem 1), P [i] be an ε-broadcast consensus
matrix conditioned on [h1[i]

T . . . hN [i]T ]T as defined below.

DEFINITION 2. For ε ∈ (0, 1], we define an ε-broadcast
consensus matrix as a random matrix P : Ω → R

MN×MN

satisfying the following properties:

1. ‖E[P T (I − J)P ]‖2 ≤ (1 − ε);

2. ‖E[P T P ]‖2 = 1;

3. P v = v for every v ∈ C (see (7)).

If properties 1) and 2) hold when the expectations are replaced
by expectations conditioned on a random vector r (i.e., E[·] is
replaced by E[·|r]), we say that P is an ε-broadcast consensus
matrix conditioned on r.

The above definition raises the question whether the agents can
easily construct such matrices without global information about the
network topology. Fortunately, the answer is affirmative because in
Definition 2 we have used properties also satisfied by consensus
matrices of existing broadcast consensus algorithms [12]. In doing
so, we can now use the rich literature on consensus algorithms to
build (in a decentralized way) ε-broadcast consensus matrices, and
we show below a particular method. This method will be used
later in in Sect. 4 to derive a new algorithm for acoustic sensor
localization.

EXAMPLE 1. (Random geometric graphs [12]):
For simplicity, consider a time-invariant graph G(N , E).

Assume that if two agents k, j ∈ N are within distance R from
each other, then (j, k), (k, j) ∈ E . Let the resulting graph be
strongly connected.1 Suppose that only one agent sends data, and
let V ω be a sample of a random matrix V : Ω → R

N×N ,
where [V ω]kj is a scalar weight assigned to the edge (j, k). With
probability 1/N , let agent k ∈ N be the agent sending data for this
particular realization ω ∈ Ω and define the components of V ω by

[V ω]jl :=

8

>

>

>

<

>

>

>

:

1, j /∈ Nk\{k} and j = l

γ, j ∈ Nk\{k} and j = l,

1 − γ, j ∈ Nk\{k} and l = k,

0, otherwise,

where γ ∈ (0, 1) is a mixing parameter. Then the random matrix
V satisfies [12]: (i) ‖E[V (I − 1/N 1N1T

N)V ]‖2 < 1, (ii)
E[‖V T V ‖2] = 1, and (iii) V 1N = 1N . With these properties,
we can verify that P := V ⊗ IM is an ε-broadcast consensus
matrix for 0 < ε ≤ (1 − ‖E[V (I − 1/N 1N1T

N)V ]‖2).

We now summarize and analyze the proposed algorithm.

THEOREM 1. (Broadcast adaptive subgradient method)
Consider the problem in Sect. 2 and assume that, for every i, the
random matrix P [i] : Ω → R

MN×MN satisfies properties 2) and
3) of Definition 2 with the expectations in those properties replaced

1We refer the reader to [12] and the references therein for the
minimum range R to guarantee a strongly connected graph with
high probability.
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by expectations conditioned on ψ[i] (ψ[i] is defined in (6)). To
solve the problem in Sect. 2, we define a sequence given by

ψ[i + 1] = P [i]

0

B

@

ψ[i] −

2

6

4

μ1[i]α1[i]Θ
′
1[i](h1[i])

...
μN [i]αN [i]Θ′

N [i](hN [i])

3

7

5

1

C

A

,

(10)

where

αk[i] = (Θk[i](hk[i]) − Θ�
k[i])/(‖Θ′

k[i](hk[i])‖2 + δk[i]).

(NOTE: See also the definitions after (8).) The algorithm in (10)
satisfies the following:

(a) (Mean square monotone approximation):

Suppose that Assumption 1 holds, and let the step size be
within the interval μk[i] ∈ (0, 2) for every k ∈ N . Then

E[‖ψ[i + 1] − ψ
�[i]‖2] ≤ E[‖ψ[i] − ψ

�[i]‖2]

for every

ψ
�[i] ∈ C�[i] := {[hT

h
T . . . hT ]T ∈ R

MN | h ∈ O[i]}.

(b) (Almost sure asymptotic minimization of the local cost
functions):

Assume the following:

1. The step size is bounded away from zero and two, i.e.,
there exist ε1, ε2 > 0 such that μk[i] ∈ [ε1, 2 − ε2] ⊂
(0, 2);

2. Θ�
k[i] =: Θ�

k ∈ R, i = 0, 1, . . .;

3. O :=
T

i≥0 O[i] �= ∅;

4. ‖Θ′
k[i](hk[i])‖ < ∞ for every k ∈ N and i =

0, 1, . . .

Then, with probability 1, the local cost functions are
asymptotically minimized, i.e.,

P
“

lim
i→∞

Θk[i](hk[i]) = Θ�
k

”

= 1.

(c) (Asymptotic mean square consensus):

In addition to the assumptions above, for some fixed ε > 0,
assume the existence of I ∈ N such that, for any interval
in the form [i, i + I ] (i ∈ N), there is at least one ε-
broadcast consensus matrix conditioned on ψ[i]. Then we
have asymptotic mean square consensus, i.e.,

lim
i→∞

E[‖(I − J)ψ[i]‖2] = 0.

(d) (Almost sure convergence and asymptotic consensus):

If the assumptions in item (c) hold and C� :=
{[hT · · ·hT ]T ∈ R

MN | h ∈ O} does not lie in a
nondegenerate hyperplane, then, with probability 1, ψ[i]
converges to a random vector ψ∞ and the agents reach
consensus asymptotically.

PROOF. The proof is omitted due to the space limitation.

Recall that (under Assumption 1) the problem in (3) is
solved when the following properties are satisfied: i) every
local function is minimized and ii) the agents are in consensus
(h1[i] = . . . = hN [i]). These two properties are satisfied

asymptotically when we apply the proposed algorithm. More
precisely, the local cost functions are asymptotically minimized
with probability one (Theorem 1(b)) and agents reach consensus
in mean square (Theorem 1(c)). In addition, under the assumptions
of Theorem 1(d), agents reach consensus with probability one and
their estimates hk[i] (k ∈ N ) converge. Theorem 1(a) also says
that, in every iteration of the algorithm, the Euclidean distance of
[h1[i]

T . . . hN [i]T ]T to a solution of (3) does not increase (in the
mean square sense).

Remark 1. (On Theorem 1)

1. The algorithm in Theorem 1 cannot be analyzed with
the deterministic approach in [6] because the mapping
T : R

MN → R
MN defined by T (ψ) = P ω[i]ψ is not

necessarily nonexpansive, i.e.,

‖T (x) − T (y)‖ ≤ ‖x − y‖
does not necessarily hold for every x, y ∈ R

MN (see
Example 1).

2. All assumptions in Theorem 1 automatically hold when
Θk[i](h) = 0, in which case we reproduce conventional
consensus algorithms (e.g., those in [12]).

3. (Asynchronous updates) Let the assumptions in Theorem
1(c) hold. Suppose that the agents do not have a common
clock, so they asynchronously apply subgradient updates
(the updates in (8)). In addition, assume that information
exchange is also performed asynchronously. Theorem 1 can
be used to analyze such an algorithm as follows. Let i ∈ N

be the time instants where there is at least one subgradient
update or information exchange among agents. Denote by
Ik ⊂ N an infinite set of time instants where agent k applies
a subgradient update. We can consider that the sequence of
functions Θk[i] is only defined at time instants Ik ⊂ N, and,
in (10), agent k is using the extended local function

eΘk[i](h) =

(

Θk[i](h), i ∈ Ik

Θ�
k otherwise.

Similarly, suppose that agents only exchange information at
time instants n ∈ IP ⊂ N using i.i.d. random matrices
P [n], where IP is also an infinite set. We can consider that
(10) is using the random matrix

eP [i] =

(

P [i], i ∈ IP

I otherwise.

With the above extensions, Θk[i](h[i]) is a subsequence of
eΘk[i](h[i]), and the convergence of eΘk[i](h[i]) to Θ�

k (we
can use Theorem 1 to reach this conclusion) also implies the
convergence of Θk[i](h[i]) to Θ�

k. Sect. 4 shows a concrete
application based on this idea.

4. (Adding constraints) Constraints can also be easily added by
considering time-varying cost functions. For example, with
the assumptions in Theorem 1(b), let Θk : R

M → [0,∞) be
a (fixed) cost function known by agent k. Suppose that the
agent has knowledge of a set C such that O ⊂ C. Then we
can use the following time-varying cost-function instead of
the original function Θk : R

M → [0,∞):

Θk[i](h) =

(

Θk(h), i odd

d(h, C) + Θ�
k i even,
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4. COORDINATED ACOUSTIC
SOURCE LOCALIZATION

We now specialize the method in Theorem 1 to localize acoustic
sources with sensor networks. (The new algorithm for source
localization is called asynchronous broadcast POCS algorithm.)
However, note that our method is general and can be applied
to many other problems (e.g., coordination, distributed adaptive
filtering, etc.).

4.1 Problem description and existing
solutions

The objective is to estimate the unknown location r� ∈ R
2 of an

acoustic source by using N agents distributed at spatial locations
rk ∈ R

2 (k = 1, . . . , N ). Each agent knows its own position
rk, the acoustic source power A, and is equipped with an acoustic
sensor that can estimate the range of the acoustic source from
the received volume (but not the direction).2 The acoustic power
perceived by agent k can be modeled as [10]

yk =
A

‖rk − r�‖2
+ nk, (11)

where nk is noise. For mathematical simplicity, nk is often
modeled as Gaussian noise even though this assumption is
unrealistic because yk is always positive. Nonetheless, algorithms
using this unrealistic assumption often gives good performance
when deployed in real-world scenarios [10]. By modeling noise as
Gaussian, the maximum-likelihood estimate rML is given by [10]

rML ∈ arg min
h∈R2

N
X

k=1

»

yk − A

‖rk − h‖2

–2

. (12)

Unfortunately, many simple decentralized algorithms used to
approximate rML with low complexity, such as the incremental
gradient method, may not provide an estimate close to rML because
the function being minimized is nonconvex. By noticing that each
term in the summation in (12) attains its minimum on the circle
Ck := {h ∈ R

2 | ‖h−rk‖ =
p

A/yk}, the optimization problem
in (12) can be replaced by the alternative convex optimization
problem [8]

ropt ∈ arg min
h∈R2

N
X

k=1

d(h, Dk), (13)

where Dk is a convex relaxation of the set Ck: Dk := {h ∈
R

2 | ‖h−rk‖ ≤ p

A/yk}. When noise is not present, the solution
set to the optimization problem in (13) is ∩N

k=1Dk � r�. If the
acoustic source position r� lies in the convex hull of the agents’
locations, i.e., r� ∈ H where

H =

(

r ∈ R
2 | r =

N
X

k=1

αkrk, αk ≥ 0,
N

X

k=1

αk = 1

)

, (14)

then the unique point in the set ∩N
k=1Dk , the solution to the

problem in (13), is r� = ropt [8]. The incremental POCS
algorithm [8] can thus be used to solve (13) in this scenario.
This algorithm is a sequential method that can be summarized as
follows. In the initialization stage, the algorithm defines a cyclic
path visiting all agents in the system. Then agent k in the path
becomes active, improves its estimate of the source location by
projecting this estimate onto the sphere Dk , and then sends the

2We can use the same techniques developed in [8] to extend the
proposed algorithm to the case where A is unknown. For brevity,
we do not consider such extensions here.

new estimate to only the next agent in the path, which repeats
the process. Unfortunately, the acquisition of a path visiting all
agents is a difficult task in large networks or in dynamic scenarios
where links can fail, thus the application of the incremental POCS
algorithm is limited to small or medium sized networks. In
addition, owing to the sequential nature of the algorithm, agents at
the end of the path have to wait a long time for an accurate estimate
of the acoustic source position.

When noise is present, ropt is not necessarily unique and r�

may not be a solution to (13). However, if the number of agents is
sufficiently large, we can expect that ropt is a good approximation
of r�. The incremental POCS algorithm does not necessarily
converge to ropt in such cases [15], but after some iterations the
sequence of estimates generated by this algorithm is close to r�

in this particular application. In addition, many simple heuristics,
such as monotonically decreasing the step size after a given number
of iterations, can further improve the performance [8]. More
generally, in different applications where the POCS algorithm is
applied, a simple method to mitigate the detrimental effects of noise
consists of using a small (fixed) step size [15].

4.2 Asynchronous broadcast POCS
algorithm

Owing to the nature of wireless channels, if agent k broadcasts
an estimate hk[i], all other agents within a certain distance are
able to receive this information. However, in the incremental
POCS algorithm, even though more than one agent may be able
to receive hk[i], only the next agent in the cycle uses this available
information. To avoid this loss of useful data in the system, we
derive an algorithm that uses the communication model in Example
1. In doing so, not only do agents not discard useful data, but they
also do not need to acquire a path visiting all agents. We start with
the following assumption, previously used in Example 1.

ASSUMPTION 2. The graph G = (N , E) is static and strongly
connected. In addition, agents within distance R from a given agent
k can receive data transmitted by agent k (and vice versa), i.e.,
(k, j), (j, k) ∈ E if ‖rk − rj‖ ≤ R.

In the proposed algorithm, at iteration i and with probability
1/N , agent m ∈ N is activated and other agents remain idle (in
practice this can be easily done with agents having independent
clocks ticking according to a Poisson process [12]). Therefore, only
agent m is able to apply the iterations in (8), thus we assume that
the agents are minimizing asymptotically 3

Θk[i](h) =

(

0, if k �= m

d(h, Dk[i]), otherwise,
(15)

where

Dk[i] :=

8

<

:

R
2, if yk ≤ ck[i]

j

h ∈ R
2 | ‖h − rk‖ ≤

r

A

yk − ck[i]

ff

, otherwise,

and ck[i] ≥ 0 is a (possibly time-varying) parameter that increases
the radius of the sphere Dk used in the optimization problem
(13) (note that, by expanding the spheres, we also increase the
probability that r� ∈ Dk[i] when noise is present). (Artificial
expansion of sets is a common technique to mitigate the effects of
noise in set-theoretic filtering [11].) If ∩k∈NDk[i] �= ∅, any point

3This idea is based on Remark 1.3. Similar time-varying cost
functions have also been used in [7], but, as shown in Remark 1.1,
the resulting algorithm cannot be analyzed with the theory in [7]
because of the communication model.
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is this intersection of sets is a minimizer of the global cost function
Θ[i](h) =

P

k∈N Θk[i](h). Thus, similarly to the incremental
POCS algorithm, the main idea of the proposed method is to find
a point in ∩k∈NDk[i], which ideally should have a small area and
include the source location r�. If we ignore noise for the moment
and set ck[i] to 0, the global function Θ[i] is guaranteed to be
minimized at any time index i only at r�, where we also have
Θk[i](r�) = Θ�

k[i] = 0 (see the discussion after (13)). Note that a
subgradient of Θk[i](h) = d(h, Dk[i]) is [11]

∂Θk[i](h) � Θ′
k[i](h) =

8

<

:

h − PDk[i](h)

d(h, Dk[i])
if h /∈ Dk[i],

0 otherwise,
(16)

where [15]

PDk[i](h) =

8

<

:

h, if h ∈ Dk[i]

h +

r

A

yk − ck[i]

(h − rk)

‖h − rk‖ otherwise.

After applying the iteration in (8) with the local functions in (15),
agent m broadcasts its improved estimate of the source location.
Then all agents able to receive this information (i.e., those within
distance R from agent k) mix their estimates with the received
estimate by using an ε-broadcast consensus matrix P [i] constructed
with the scheme in Example 1. (NOTE: In the construction of P [i],
agents not able to receive hk[i] can remain idle because they do
not mix estimates. The matrices P [i] (i = 0, 1, . . .) are i.i.d. and
independent of ψk[n] for every n.) The whole process is repeated
with a new active agent.

We summarize below our method for coordinated acoustic
source localization, which can be shortly described as the
application of the local cost functions in (15) and the ε-broadcast
matrices in Example 1 to the scheme in Theorem 1 with Θ�

k[i] = 0
(i.e., we ignore the presence of noise).

ALGORITHM 1. (Asynchronous broadcast POCS
algorithm):

1. Initialize the estimates hk[i] with an arbitrary hk[0] ∈
R

2.

2. Only agent m ∈ N becomes active (agents have the same
probability 1/N of becoming active).

3. hm[i + 1] = hm[i] − μm[i]
`

PDm[i](hm[i]) − hm[i]
´

,
where μm[i] ∈ (0, 2) is the step size.

4. Agent m broadcasts hm[i + 1]

5. Agents j ∈ Nm\{m} (i.e, all agents within distance R to
agent m) mix the received estimate hm[i + 1] with their
own estimates hj [i]:

hj [i + 1] = γhj [i] + (1 − γ)hm[i + 1], j ∈ Nm\{m},
where γ ∈ (0, 1) is a mixing parameter common to all
agents. (Agents k /∈ Nm do not perform any operations,
so we can consider that hk[i + 1] = hk[i].)

6. Increment i and go to step 2.

Note that Algorithm 1 requires neither synchronization nor
agents to be aware of their neighbors. Simultaneous information
exchange among agents, a common assumption in previous
decentralized optimization using subgradient methods [5–7], is also

not necessary. In our approach, agents randomly become active,
improve their estimates hk[i], and broadcast hk[i] to all other
agents within range R. We can analyze Algorithm 1 directly with
Theorem 1 in the absence of noise for the following reasons:

1. The subgradients are bounded (see (16)).

2. The set O (as defined in Theorem 1(b)) is nonempty because
Θk[i](r�) = 0 for every k ∈ N and i ∈ N (i.e., r� ∈
∩k∈NDk).

3. At every iteration the algorithm uses samples of an ε-
broadcast matrices constructed with the method in Example
1 (P [i] and ψ[i] are independent).

Therefore, all conditions of Theorem 1(a)-(c)4 can be easily
satisfied by simply choosing step sizes μk[i] bounded away from
0 and 2.

The assumptions in Theorem 1 do not necessarily hold in
the presence of noise, but nevertheless we can apply the same
ideas used to mitigate the effects of noise in other POCS-based
algorithms or set-theoretic adaptive filters. Here we choose to
expand the parameters ck[i], k ∈ N . Ideally, these parameters
should be small real numbers so that r� ∈ Dk[i] and the area
of ∩k∈NDk[i] is small. Unfortunately, computing such values is
not possible, but we can slowly increase the radius of the sphere
Dk[i] every time node k is activated. Intuitively, if the convergence
of the algorithm is faster than the increase rate of the sphere
Dk[i], we can expect that, once ∩k∈NDk[i] is nonempty, all agents
soon find a point in ∩k∈NDk[i] and stay in this point, which is
assumed to be a good approximation of r�. This approach has
also been successfully used by algorithms using the assumption of
simultaneous information exchange [7].

4.3 Numerical simulations
We evaluate the performance of the asynchronous broadcast POCS
algorithm in settings almost identical to those in which the original
incremental POCS algorithm was evaluated [8, Sect. V]. In
a 100m × 100m field, at each realization of the simulation we
randomly distribute 5000 agents and place an acoustic source with
A = 100 at r� = [50 50]T . Each agent measures the acoustic
power at their own locations according to (11). The noise nk is
modeled as Gaussian with variance σk = 1, and only agents with
perceived power greater or equal than 5 (i.e., yk ≥ 5) take part in
the estimation task. Each agent in the estimation task has a uniquely
identifying number from the set {1, . . . , N}.

We compare the incremental POCS algorithm with different
versions of the proposed broadcast POCS algorithm. We do
not show the performance of the maximum likelihood estimator
because (12) is a nonconvex optimization problem, and algorithms
dealing with nonconvex functions usually have poor performance if
they are not initialized with a point close to the unknown acoustic
source location [8].

To construct the sequence of agents [s0 . . . sN−1] (sk ∈ N ) for
the incremental POCS algorithm, we start with s0 = 1 and set sk+1

to be the nearest agent to sk that has not been previously selected
(i.e., sk+1 �= sl l = 0, . . . , k). All agents use the same step size
μk[i] = 0.4 in the incremental POCS algorithm. Table 1 shows
the parameters used by the proposed broadcast POCS algorithm.
In this table, ak[i] is the number of times that agent k has been
activated up to time index i.

The performance of interest is the mean square error (MSE)
normalized by the number of agents N (because N is a random
4The results in Theorem 1 are valid for any sequence of functions
obtained in one realization of the algorithm.
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Table 1: Parameters used by the different versions of the
broadcast POCS algorithm. For each version of the algorithm,
all agents use the same values for μk[i], R, and γ.

Name μk[i] ck[i] R γ
Broadcast POCS-a 0.4 0 5 0.5
Broadcast POCS-b 0.4 0 7 0.5
Broadcast POCS-c 1 0.1 ak[i] 5 0.5
Broadcast POCS-d 1 0.1 ak[i] 7 0.5

variable in the simulation)

MSE[i] = E

"

1

N

N
X

k=1

‖hk[i] − r
�‖2

#

.

We also show the mean square distance to consensus (MSDC)
normalized by the number of agents, defined by

MSDC[i] = E

»

1

N
‖(I − J)ψ[i]‖2

–

.

(NOTE: ‖(I − J)ψ[i]‖ is the distance of ψ[i] to the consensus
subspace C defined in (7). When ‖(I − J)ψ[i]‖ is zero, all agents
are in consensus.)

We compute expectations by averaging the results of 100
realizations of the simulation, which, as shown in the figures in this
section, is enough for statistical significance (because the curves
of the algorithms are smooth enough to draw conclusions on the
relative performance of the algorithms).

Fig. 1 shows the results. The convergence speed of the
broadcast POCS algorithm increases as a function of R when other
parameters are kept constant because fewer iterations are needed
to propagate indirectly the information of every agent through the
network. We also see that slowly increasing the radius of Dk[i] (by
increasing ck[i]) is an efficient method to improve the steady-state
performance. The choice of ck[i] in Table 1 is intuitively appealing
because agents with low signal-to-noise rate (SNR), usually those
with small yk, stop their unreliable subgradient updates in few
iterations (because the relation yk < ck[i] is often satisfied in a
short period of time). Subgradient updates last longer in agents
with high SNR, which improves the quality of the estimate. In
addition, by increasing ck[i], the probability that the intersection
∩k∈NDk[i] is nonempty increases with time, and the assumptions
in Theorem 1 are more likely to be satisfied. This fact is observed
experimentally by noticing that:

1. In Fig. 1(a), the MSE fluctuations in the curves of versions
(c) and (d) of the broadcast POCS algorithm eventually cease
when the expectation is computed by averaging the results of
only 100 realizations of the simulation. This is an indication
that the estimates of all agents are converging in all runs
of the simulation for these versions of the algorithm, a fact
predicted by Theorem 1(d).

2. The MSDC of versions (c) and (d) of the broadcast POCS
algorithm is converging to 0 (see Fig. 1(b)), another
indication that the conditions of Theorem 1(d) have been
satisfied in all runs of the simulation for these versions of
the algorithm.

Care should be taken in the choice of the parameters ck[i]. If the
radii of the spheres Dk[i] grow too fast, the subgradient updates
cease too soon in every agent, and the steady-state performance
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Figure 1: Transient performance of the algorithms. (a) Mean
square error. (b) Mean square distance to consensus.

decreases. This fact is illustrated in Fig. 2, where we can see that
the steady-state performance of the algorithm decreases as Dk[i]
increases more quickly. If a typical scenario for the application
of the algorithm cannot be defined, in which case a good choice
of ck[i] cannot be obtained by means of simulations, we can fix
ck[i] = 0 as done with versions (a) and (b) of the broadcast
POCS algorithms. Even though many assumptions of Theorem
1 do not hold in these versions of the algorithm (because of the
presence of noise), as shown in Fig. 1, the convergence speed and
steady-state performance are still satisfactory. We can also devise
schemes where ck[i] is chosen automatically by each agent, but
these approaches will not be investigated here.

The results of the incremental POCS algorithm should be used
only as a rough reference of its achievable performance because
we have only used a small fixed step size to mitigate the effects
of noise. Techniques to improve further the performance of this
algorithm in this particular application domain are out of the
scope of this study. However, being an incremental method where
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Figure 2: Transient performance of the broadcast POCS
algorithm as a function of ak[i]. Except for ak[i], the
parameters of the algorithms are identical to those of the
Broadcast POCS-d algorithm in Table 1.

estimates are broadcast to only one neighbor at each iteration,
the incremental POCS algorithm always exhibits the slow start
observed in Fig. 1 because at least one cycle is necessary to improve
the estimate of every agent in the network. In addition, it also
requires the definition of a path visiting all agents taking part in
the estimation task, thus a complex routing scheme is necessary.
Therefore, if the transmission range is long enough, our broadcast
POCS algorithm is a good alternative because it is fast, has good
steady-state performance, and does not require the acquisition of a
path visiting all agents in the estimation task.

5. CONCLUSIONS
We have developed a non-hierarchical algorithm for decentralized
optimization of a sum of convex functions. Each term in this
sum is a local cost function known by an agent in a network, and
we assume that the sets of optimizers of the local functions have
nonempty intersection. Unlike existing optimization methods, the
local cost functions can be time-varying, a very useful property
in online learning, and agents exchange information locally by
using recent results in broadcast average consensus algorithms.
This mechanism for information exchange enable us to relax the
assumption of simultaneous exchange information among agents, a
common assumption in the analysis of multiagent algorithms using
subgradient methods. We have shown conditions to guarantee
almost sure asymptotic minimization of the local cost functions,
consensus among agents, and convergence.

As an example of a possible application, we used the proposed
method in its most general form to derive a new POCS-based
algorithm for acoustic sensor localization. This application shows
efficient techniques to apply the general method even when many
assumptions do not necessary hold. Our algorithm for source
localization and the existing incremental POCS algorithm are
similar, but the former usually has better convergence speed
because data is simultaneously transmitted to multiple agents in
every iteration. In addition, our algorithm also does not require the
acquisition of path visiting all agents in the network.

Future work may include the study of mobile agents with
heterogeneous sensors, which is possible with the proposed method

because it is a very general optimization tool that can handle time-
varying cost functions.
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